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Current Volume: 

1,000 Office Visits, Sleep Studies, and New PAP Setups per Week
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January 2021: 
90% increased CPAP usage during year 1  
(312 vs 164 min, p-value< 0.00001, n=3884 patients)
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History Of PAP
•In 1878 Oertel used inspirations of compressed air to 
treat severe asthma

•In 1887 George Fell used a foot-operated bellows to 
ventilate opioid overdoses until they recovered

•Alvan Barach et al used PAP to treat pulmonary edema 
in 1930’s

•Used frequently to treat ARDS in the 1970’s

•Then in the 1980’s to treat OSA

Sullivan et al, Lancet April 18, 1981: “Reversal of 
Obstructive Apnoea by Continuous Positive Airway 
Pressure through the Nares”
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Early CPAPs Had Decreased Inspiratory and Increased Expiratory 
Pressures 
1986, Kingman Strohl and Susan Redline 
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Sanders & Kern introduce Bilevel PAP in 1990
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Results of Sanders and Kern (1990)

Belief that EPAP treats Apneas and IPAP treats hypopneas 
“Crack the airway open with EPAP then blow it open with IPAP”


Belief that inspiratory events (hypopneas/snoring) require higher 
inspiratory pressure


Thus increase IPAP for hypopneas during titration and their initial bilevel 
titration protocol is still the basis of the AASM titration guidelines 
(2008) recommended today


From 1995, bilevel PAP has not shown improved adherence in 
uncomplicated OSA


Despite little clinical evidence for uncomplicated patients, bilevel PAP has 
generated financial benefits for suppliers and manufacturers
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Philips Introduces CFLEX in 2003
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Expiratory Pressure Reduction Algorithms

1) Little evidence of increased adherence particularly in larger RCTs 
 (Bakker et al 2010, Pepin et al 2009)


2) Associated with compromised therapy 
(Zhu et al 2016)


3) Pressure reductions do not transmit to pharynx, merely to the mask 
(Masdeu et al 2012)


	 	 Engineers engineer to the face, not the pharynx
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Mask Compensation Algorithms  
(Initially introduced Philips in 2009)

React Health, formerly 3B Medical 

Luna G3

     Philips Respironics Dreamstation 2 
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Mask Compensation and Resistance 

Increasing Resistance 

Large  Medium  Small Extra-Small
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Mask Resistance Compensation Algorithms 
Further increasing IPAP to offset increased resistance in certain masks 

(ie nasal pillows) increases velocity (jetting) against nasal mucosa


Higher IPAP may lead to increased adverse effects such as aerophagia, 
leak, mouth opening, and potentially TECSA


Remove the advantage of high resistance interface in decreasing IPAP 
and increasing EPAP which may reduce the overall device pressure 
setting
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Bottom Line Regarding Mask Type Settings on PAP 
Devices

Respironics (Philips): 

1) never studied effects of mask compensation algorithms on PAP 

acceptance or therapy

 2) never even tested mask resistance compensation algorithms on 

volunteers/patients (they thought it was just “engineering”)

Testing would have found: 

1) 100% of new patients preferred the FFM setting with a nasal pillow 
interface  
2) no effect on therapy


It was just the “belief” that maintaining IPAP was priority in therapy
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 The 3 Major Actions of EPAP on the Pharyngeal 
Airway:

The First Two apply to all OSA patients 
 
EPAP (particularly EEP):

• 1) Increases Cross-Sectional Airway 

	 Reduces inspiratory resistance (effort) 
	 (Darcy-Wiesback equation)


• 2) Increases End Expiratory Lung Volume (EELV) 
	  Stabilizes UA (tracheal traction)


• IPAP does not increase EELV
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     Optimal EPAP        vs.        Reduced EPAP
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End Expiratory Pressure in Relation to PCrit 
Pcrit is a Critical Time, not just a Pressure
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End Expiratory Pressure in Relation to PCrit 
Pcrit is a Critical Time, not just a Pressure
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End Expiratory Pressure in Relation to PCrit 
Pcrit is a Critical Time, not just a Pressure
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EPAP prevents obstruction or collapse of the pharynx by...

Increasing stiffnessIncreasing volume



© 2023 SleepRes, LLC. All Rights Reserved.

End-Expiratory Lung Volume Matters: 
Why OA, HGN, UPPP, etc are Inferior Therapy 

• Heinzer et al found manipulating lung volumes with an 
iron lung could:

• (2006) Reduce the mean AHI in half (>60 to <30) by 

merely increasing EELV (no PAP)

• (2005) Change therapeutic PAP level required between 5 

cmH2O and 17 cmH2O


• Stadler et al (2010) compressed the abdomen with a 
pneumatic cuff to decrease EELV, and found that the 
pharynx was easier to collapse in obese males with 
OSA
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The Third Advantage of EPAP (EEP): 
Decreased Work of Breathing (WOB) in Obese Patients

End-expiratory pressure (EEP)…

… increases EELV (FRC) 

…which increases lung/chest wall compliance 

…and decreases the increased elastic work of breathing in obese 

individuals
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Components of Lung Volume

Steier et al., 2014

Total

Inspiratory Reserve

Tidal volume

Expiratory Reserve

Reserve
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Obesity and Lung Volume 
(Steier et al 2014)
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Progression of Work of Breathing in OSA 
(Lee et al 2016)
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Metabolic Compensation

Why do patients develop chronic hypercapnia (elevated CO2)?


What determines when someone develops chronic (not acute) 
respiratory failure?


PAlveolarO2 = PInspO2 – PCO2 / R
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CPAP equal to NIV in OHS 
(Masa et al., 2019)

• Masa et al. compared CPAP 
to NIV in OHS


• All parameters improved 
significantly with both  CPAP 
and NIV including 
hospitalizations
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Since 1990, many PAP Advances have Focused on 
IPAP > EPAP or maintaining IPAP

Both Sanders and Kern (1990) and Resta et al found that in the setting of 
adequate EPAP that IPAP (at levels > EPAP) had some effectiveness with 
hypopneas 


But they did not find (nor has anyone else) that IPAP is superior to EPAP 
in resolving hypopneas


The widespread dogma of “crack the airway open with EPAP and then 
blow it open with IPAP” has little evidence to support it


Reducing EPAP below optimal level destabilizes the upper airway (and in 
that setting higher IPAP can reduce obstructive events)


The concept that IPAP is best to treat hypopneas and EPAP is best to treat 
apneas is simply not true.  
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Adverse Effects of IPAP>EPAP

• Increased Inspiratory Resistance and Effort 

• Aerophagia


• Unintentional Leak/Mouth Openings


• TECSA
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Inspiration Obstruction?  
Lung volume greatly expands further stabilizing the airway 

Schwab et al 1993
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Pharyngeal Viscoelastic Nature Overlooked: 
Starling Resistor Model is Misleading 

Changes in airway diameter (shape or folds) have a time constant to 
change:

	 - not represented by balloon (Starling model) 
	 - Likely unique for each airway


End-Expiratory airway shape extends into Inspiration (and vice versa)

Examples: 
1) Nasal EPAP devices 
2) HGN stimulators
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Lung elasticity recoil pressure is increased in 
patients with OSA

Abdeyrim et al., 2015, found increased lung 
elastic recoil pressure in patients with OSA


May explain the increased UA resistance 
beginning during expiration (Sanders 1983)
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Think EPAP and less IPAP

Apneas and hypopneas occur at critical pressures 
and time are determined by:


• The volume of the pharynx


• The volume of the lungs


• The stiffness of the pharyngeal walls


And the viscoelastic nature and elastic recoil


All of these are determined by EPAP, NOT IPAP
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Reducing IPAP relative to EPAP Needed to be 
investigated

• After 30 years of IPAP > EPAP, adherence rates 
remain poor


• There is an optimal EPAP to stabilize each airway

 

Yet, no commercially available bilevel device can 
reduce IPAP < EPAP so………………..
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V̇-Com™ : Testing the Theory 

• Adding non-compensated resistance 

• July 2021: Design and 3-D Print an inline  

resistor

• Resistance to flow: 2.0 cmH2O at 50 L/min

• Dropped IPAP, but maintained EPAP

• Comfort was obvious


• January 2022: Redesign resistor for injection 
molding


• Resistance to flow lowered: 1.7 cmH2O at 50 L/min


• June 2022: V̇-Com™ introduced at APSS

• Now with FDA requirements met, patient use began
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Resistance in the PAP Circuit 
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V̇-Com™: Does it Effect Therapy?

Parameter  Participants  No   
V̇̇ -Com 

Std. 
dev  V̇̇ -Com  Std. 

dev 
Outcome w/  

V̇̇ -Com** 

% Improved 
by V̇-Com™  

P95%/
90% Pressure 
(cmH2O) 

n=61  11.23  2.82  11.33  3.01  No difference  N/A- 

AHI (events/
hour)  n=61  2.15  2.37  1.79  1.75  Improved  

(p-value<0.04)  69% (n=42/61) 

Leak (L/min)  n= 43*  12.06  9.50  8.00  7.27  Improved  
(p-value<0.0001)  88% (n=38/43) 

Usage (hours)  n=61  7.27  1.33  7.54  1.43  Improved  
(p-value<0.03)  64% (n=39/61) 



© 2023 SleepRes, LLC. All Rights Reserved.

2022 Data from University of Utah 
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V̇-Com™ Comfort Data in Patients Initiating PAP
A large DME company in the midwestern US conducted a trial of 47 patients who experienced CPAP 
during their set-up at their prescription pressure using the same interface both without and then 
with the V̇-Com™ in the circuit. Patients were then asked 3 questions regarding their experience. 

98% (n=46/47) felt CPAP was more comfortable with the V̇-Com™  

98% (n=46/47) believed they were more likely to use CPAP with the V̇-
Com™  

83% (n=39/47) were willing to pay $35 extra out of pocket to have V̇-
Com™ in their CPAP circuit 

(Their manuscript is currently being submitted)
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Long-Term CPAP Patients Choose V̇-Com™  

77% of long-term CPAP users prefer PAP with V̇-Com

• To examine potential adverse effects for V̇-Com™’s Quality Management System 

(QMS), 101 patients from a large community-based sleep medicine practice were 
recruited to examine the V̇-Com™ in the circuit in regard to effects on auto-
titration algorithms (P90/955 pressure), usage time, leak and residual index (AHI).


• Each of the 101 participants were asked to give a written description of their 
experience with the V̇-Com™ during the 4 days of use. Of the total, 67% 
(n=67/101) responded and 77% (n=53/67) elected to continue use of the V̇-Com™ 
in their CPAP circuit long term.  
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Adherence data with V-com

Large DME in Midwest US independently examined 90-day adherence 
rates in new CPAP patients (n=100) using 4 hours 70% of nights as 
criteria and found V̇-Com™ yielded 12% increase in those meeting the 
criteria


Large DME in Southeast US provided struggling patients with a V̇-Com™ 
and found 30-day usage after V̇-Com™ was twice the 30-days before 
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Pressure Tolerance during CPAP Titration

V-Com™ improves pressure tolerance during in-lab CPAP titration in 
91% of patients


• During collection of titration PSG data from June 2022 – February 2023 for TECSA and oral leak, 
sleep technologists were also allowed to add a V-Com™ to the PAP circuit of a patient with 
pressure intolerance to the point they were about to abort the titration study. During the time 
period of the study, sleep technologists identified 34 patients with such pressure intolerance. The 
V-Com™ alleviated the pressure intolerance such that the titration study could continue and be 
completed in 91% (n=31/34) of those patients. 


• Statistics still in process. Manuscript preparation not begun
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Eliminating Need for Chinstaps

• V̇-Com™ reduced the need for chinstraps in 85% (n=53/62) of 400 
consecutive patients undergoing titration polysomnogram (PSG)  


• The chinstrap was indicated (based on sleep technician assessment) in 16% (n=62/400) of 
titrations and V̇-Com™ was introduced first in all 62 cases. The V̇-Com™ avoided the need for a 
chinstrap in 85% (n=53/62) of cases, despite therapy pressure being further increased after the V̇-
Com™ in many of these titration studies.


• Manuscript in preparation
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Treatment-Emergent Central Sleep Apnea (TECSA)

• V̇-Com™ improved treatment emergent central sleep apnea (TECSA) 
in 100% (n=17/17) and resolved 94% (16/17) of patients developing 
TECSA during 1000 consecutive titration PSGs 


• With C-Flex+ on during titration study (n=500) there were 14 cases of 
TECSA (2.8%) and with C-Flex off (n=500) 3 cases of TECSA (0.6%)


• Our hypothesis was that TECSA resulted from augmented tidal volumes (Vt) and increased V̇m from PAP 
therapy, particularly when IPAP greater than EPAP provides PS. While increased loop gain is likely involved, 
there must be some increase in V̇m to reduce ETCO2 below the apneic threshold.


Manuscript ready for submission
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Reduce Obstructive Events
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The Future of PAP Therapy 
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  Let Patients Choose Comfort 

• What constitutes sufficient evidence for use regarding comfort?

• Just like choosing a mask for comfort, let patients choose comfort with 

V̇-Com™ 

• Insist your patients always experience V-Com during PAP set-up 

and choose for themselves
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